Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface.

نویسندگان

  • S H Yu
  • F Possmayer
چکیده

Interaction of pulmonary surfactant protein A (SP-A) with pure and binary mixed dipalmitoylphosphatidylcholine (DPPC) and cholesterol (3.5 wt%) at the air/saline, 1.5 mM CaCl2 interface was investigated using a rhomboid surface balance at 37 degrees C. Surface tension-area isotherms were measured to access the surface active properties of the monolayers. The organization of DPPC and cholesterol in DPPC and DPPC/cholesterol mixed monolayers with or without SP-A at equilibrium surface tension (approximately 23 mN/N) was revealed by autoradiographs of Langmuir-Blodgett (L-B) films deposited from [14C]DPPC or [14C]cholesterol-labeled monolayers. The results showed that SP-A can interact with the polar head groups of DPPC monolayers and aggregate DPPC molecules. SP-A decreased the surface area reduction required for DPPC monolayers to achieve near zero surface tension from 30 to 25% of the area at equilibrium. SP-A also reduced the collapse surface tension of pure cholesterol from 27 to 23 mN/m. DPPC and cholesterol formed homogeneous mixed monolayers when both were dissolved in the spreading solvent prior to spreading, while separate cholesterol-rich domains appeared when DPPC and cholesterol were spread successively. Cholesterol resisted squeeze-out from either mixed monolayer through compression. Although SP-A could not promote the squeeze-out of cholesterol from homogeneous mixed monolayers, it facilitated that of cholesterol domains especially when SP-A had first interacted with DPPC. These results indicate that pulmonary surfactant protein A facilitates the squeeze-out of cholesterol domains from mixed monolayers by condensing DPPC and limiting lateral interactions of DPPC with cholesterol domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pulmonary surfactant protein

The effects of surfactant-associated protein A (SPA) on lipid adsorption to the air-water interface and accumulation of dipalmitoylphosphatidylcholine (DPPC) in the surface region were investigated at 37%. Dispersions used were bovine pulmonary lipid extract surfactant with or without neutral lipid (NL). Lipid adsorption was examined with the Wilhelmy plate technique and DPPC accumulation by mo...

متن کامل

Nanoparticle interaction with model lung surfactant monolayers.

One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding,...

متن کامل

DPPC Langmuir monolayer at the air-water interface: probing the tail and head groups by vibrational sum frequency generation spectroscopy.

Dipalmitoylphosphatidylcholine (DPPC) is the predominant lipid component in lung surfactant. In this study, the Langmuir monolayer of deuterated dipalmitoylphosphatidylcholine (DPPC-d62) in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase has been investigated at the air-water interface with broad bandwidth sum frequency generation (BBSFG) spectroscopy combined with a Langmuir...

متن کامل

On the low surface tension of lung surfactant.

Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compres...

متن کامل

Phase Transitions in Dipalmitoylphosphatidylcholine Monolayers.

A self-assembled phospholipid monolayer at an air-water interface is a well-defined model system for studying surface thermodynamics, membrane biophysics, thin-film materials, and colloidal soft matter. Here we report a study of two-dimensional phase transitions in the dipalmitoylphosphatidylcholine (DPPC) monolayer at the air-water interface using a newly developed methodology called constrain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 1998